Riemann Toplamı

Bir düzgün geometrik şeklin alanı kolayca formüle edilebilir. Kenarları düzgün olmayan kapalı bir bölgenin alanını bulmak için bu bölge kenarları düzgün olan daha küçük kapalı bölgelere ayrılır. Küçük bölgelerin alanları yardımıyla büyük bölgenin alanı hesaplanabilir. Herhangi bir [a, b] aralığı verilmiş olsun.

n∈ N ve kapalı aralığın sınır noktaları a ve b olmak üzere a ve b arasındaki artan sıralı x değerleri için;
 a = x0 < x1 < x2 < … < xn – 1 < xn = b şeklinde yazılıyorsa;
P= {x0, x1 , …, xn} şeklinde tanımlı P sonlu kümesine, [a, b] nın bir bölüntüsü denir.;
 [x0, x1 ], [x1 , x2], …, [xn – 1 , xn] kapalı aralıklarının her birine de kapalı aralık [a, b] nın bir P bölüntüsüyle ilgili alt aralıkları denir.

Bu tanımdaki alt aralıkların uzunlukları;
 Δx1 = x1 – x0 , Δx2 = x2 – x1 , ..., Δxn = xn – xn–1 dir.
Δx1 = Δx2 = ... = Δxn ise yani kapalı aralık eşit olarak aynı ölçüde alt aralıklara ayrılmışsa bu P bölüntüsüne bir düzgün bölüntü denir.

Örneğin [0,1] kapalı aralığını herbiri 1/5 birim olacak biçimde
{0, 1/5, 2/5, 3/5, 4/5 , 1} şeklinde bölerek oluşturduğumuz bir
P, [0, 1] aralığının bir düzgün bölüntüsü olur.

Δx değeri verilen aralığın uç değerlerinin bölüntü sayısına bölümü ile bulunur. Bir kapalı [a, b] aralığı için n bölüntü sayısına göre;
Δx=(b-a)/n formüle edilebilir. 

Genelde düzgün bölüntüler hesaplamada daha kolay işlem yapabildiğimiz için tercih edilir. Düzgün ve düzgün olmayan bölüntünün daha net anlaşılması için bir örnek verelim.

 Aşağıdaki örnekte P1 düzgün bölüntü, P2 de düzgün olmayan bir bölüntü örneğidir. 
Bölümlemeler ne kadar küçülürse o kadar sık diziler meydana getirilir. Bu şekilde bir kapalı aralığı giderek incelenmiş parçalanmalardan oluşan elemanların oluşturduğu diziye de incelme dizisi denir.
f: [a, b] → R, sınırlı bir fonksiyon olsun. P parçalanmasına ait olan bir eğrinin altına çizilen dikdörtgenlerin alanlarının tamamının toplamına alt toplam, eğrinin üst tarafında kalan alanların toplamına da üst toplam adı verilir.


Georg Friedrich Bernhard Riemann (1826–1866): Matematik ve geometri dalında çok önemli çalışmaları ile modern kuramsal fiziğin gelişmesine önemli katkıları olmuştur. Riemann integrali olarak bildiğimiz belirli integral kavramını literatüre kazandırmıştır.
Riemann toplamında alt ve üst toplamlar arasında şu şekilde bir ilişki vardır. Eğrinin altındaki gerçek alanın alt ve üst toplam arasındaki bağıntısı;  R alt toplamı < Gerçek Alan (integral Değeri) <R üst toplam  (eşitlik de yazılabilir) şeklinde ifade edilir. 
Riemann toplamının nasıl uygulandığını daha rahat anlayabilmek için bir örnek üzerinde çalışalım.Verilen bir fonksiyonun grafiğinin eğrinin alt ve üst bölgelerinde dikdörtgenler çizerek toplam alanı bulmaya çalışalım. Çizilen dikdörtgen sayısı ne kadar fazla ise oluşacak olan alan toplamı da o kadar net sonuç verecektir.
Aynı kapalı aralık çok daha fazla dikdörtgen alanlarına ayrılırsa daha net alan değeri ile karşılaşırız. Eğrinin altında kalan alanlar (A) ve ve eğrinin üst bölgesinde kalan alanalar (Ü) değeri Parça sayısına göre değişiklik gösterecek ve bölüntü ne kdar çok olursa eğrinin altında kalan alan değeri de o kadar net sonuç verecektir. Aşağıdaki tabloda eğrinin altındaki dikdörtgen sayılarının değişimi ve buna bağlı olarak da alt ve üst toplamın değeri gösterilmiştir.
Tablo incelendiğinde eğrinin altı, daha çok sayıda eşit uzunluktaki alt aralıklara böldüğümüzde eğrinin alt toplamlar değeri artarak üst toplamlar değeri de azalarak aynı sayıya yaklaşmaktadır. Bu sayı tablodan da görüldüğü üzere 9 dur. Alt ve üst toplamlarının ulaştığı bu limit değerine fonksiyonun o kapalı aralıktaki belirli integrali denir. Burada belirtilen alan hesabının görsel olarak geogebra yazılımıyla da rahatlıkla görebilirsiniz. https://www.geogebra.org/m/cfQQKDx7 Materyali indirip geogebra yazılımında kendiniz de çalıştırıp görebilirsiniz.

Riemann İntegrali alt ve üst toplamlarını bulduktan sonra parçalanma bölüntüsünü sonsuz sayıda tekrarladığımızda limit değerine ulaşmış oluruz ve kesin alanı net olarak hesaplamış oluruz. Bu nedenle Riemann integrali limit yaklaşımıyla belirli integrale dönüşür ve şu şekilde formüle edilir. 

Aşağıda Riemann toplamının kullanıldığı çeşitli örnekler verilmiştir. Konuyu anlamak için örnekleri dikkatlice inceleyiniz. Bazı integral alma sonuçları belirsiz integral kuralları kullanılarak alınmıştır. Bu nedenle türev ve integral arasındaki ilişkiyi iyi bilmek, bu konuyu anlamada büyük fayda sağlayacaktır.

Örnek: Bir fonksiyonun  [0,4] aralığındaki eğri altında kalan alanı 4 eşit parçaya ayıracak biçimdeki düzgün parçalanma bölüntüsü P kaçtır?


Çözüm:
Δx = (4-0)/4=4/4=1 eşit olan aralıkların uzunlukları bulunur.
Dolayısıyla parçalanma P={0,1,2,3,4} olur.


Örnek: [0,4] aralığından R 'e tanımlı bir fonksiyon olan f(x)=3x fonksiyonun grafiğinin altını bu aralıkta 4 eşit parçaya ayıran P parçalanmasına ait olan alt ve üst toplamları bulunuz.

Çözüm:
Δx = (4-0)/4=4/4=1 eşit olan aralıkların uzunlukları bulunur.
Dolayısıyla parçalanma P={0,1,2,3,4} olur.
f(1)=3.1=3
f(2)=3.2=6
f(3)=3.3=9
f(4)=3.4=12

R(A)= 1.3+1.6+1.9=18
R(Ü)=12.1+9.1+6.1+3.1=30


Alt dikdörtgenlerin ve üst dikdörtgenlerin toplam alanlarının, [0, 4] aralığındaki f(x) = 3x fonksiyonunun grafiğinin x-ekseni ile arasındaki alana yaklaştığı görülmektedir. Dolayısıyla buradan f: [0, 4] → R, f(x) = 3x fonksiyonunun grafiğinin, x-ekseni ile arasında kalan alan Riemann toplamı yardımıyla 24 birimkare olarak tahmin edilebilir.
Çözüm: R alt toplamı < Gerçek Alan (integral Değeri) <R üst toplam  (eşitlik de yazılabilir) Soruda [1,4] kapalı aralığındaki eğrinin bir parçalanmasına air gerçek alan değeri 10 olarak verilmiştir. Buna göre Alt toplamı<integral değeri< üst toplam eşitsizliğine göre verilen ifadeleri düzenlersek;
alt toplam<10<üst toplam
alt toplamın maksimum değeri x<10 buradan x=9 olur.
10<üst toplam
üst toplamın minimum değeri  10<y buradan y=11 olur. 2x-y=2.9-11=7 bulunur.


Tümevarım İspat Yöntemi ve Örnekleri

Matematiğin en temel ve en önemli işlerinden biri, teoremleri ispatlamaktır. Varlık bildiren teoremler hariç, bir teoremin doğru olduğunu gösteren tek bir örnek vermek hatta örnekler göstermek bir teoremin ispatı için yeterli değildir. Çünkü teorem, verilen bu örnek veya örnekler için doğrulandığı halde başka bir örnek veya örnekler için doğrulanmayabilir. Bu nedenle verilen bir hükmün doğruluğu matematikte kesin olarak gösterilmek durumundadır. Bu uygun akıl yürütme etkinliklerine de ispat denir. Tümevarım yöntemi de ispat yöntemlerinden bir tanesidir. Tümevarım yöntemi genellikle domino taşlarına benzetilerek akılda somut hale getirilebilir. Bildiğimiz üzere, ilk domino taşı istenilen yönde itildiği zaman, diğer domino taşları da sırasıyla düşmektedir. Bütün domino taşlarının düştüğünden emin olmak için iki temel önermeyi bilmemiz yeterlidir: 1) İlk domino taşı düşer. 2)Herhangi bir domino taşı düştüğünde onun ardışığı olan domino taşı da düşmelidir. İşte; matematiksel tümevarım ilkesinin temeli, bu iki temel önermeyi içine alan domino taşlarının düşmesi durumuna benzetilmektedir.
Matematiksel olarak tümevarım ilkesi şu şekilde özetlenebilir. Her n pozitif tamsayısı için herhangi bir P(n) önermesi verildiğinde; bu önermede P(1) doğru ve bir k pozitif tamsayısı için P(k) doğru ise P(k + 1) de doğrudur. O zaman her n pozitif tamsayısı için P(n) doğru olur. Bu ispat yöntemine, matematiksel tümevarım ilkesi denir. 
ise (⇒) bağlacı ile kurulan bileşik önermesi mantık kuralları gereği 1⇒0 durumunda kesin olarak yanlış olacağı için; P(k)⇒P(k+1) bileşik önermesinin doğru olduğunu göstermek için; P(k) önermesi doğru varsayıldığında (kabul edildiğinde) , P(k + 1) önermesinin de matematiksel olarak doğru olduğunu göstermemiz gerek ve yeter şarttır. Tümevarım yöntemiyle ispat yaparken, bu basamağa dikkat edilmesi gerekir. Matematiksel tümevarım ilkesinin yukarıda sayılan üç basamaktan  birincisi olan i) basamağına temel basamak, ikincisi olan (ii) basamağına ise tümevarım basamağı denir. Yukarıda gösterilmiş olan tümevarım ilkesinde (ii). adımdaki, P(k)⇒P(k + 1) koşullu önermesini ispatlamak için genellikle doğrudan ispat yöntemleri kullanılır.
Tümevarım bir ispat yöntemi olarak, önceki yüzyıllarda matematik dünyasını ciddi manada meşgul etmiş olmasına rağmen sonraki yüzyıllardaki matematikçiler ve felsefeciler tarafından eleştirilere de maruz kalmıştır. Bir matematikçi olan B. Russell tümevarım yönteminin acizliğini Hristiyan dünyasına şöyle bir misalle aktarmıştır.“…Mantıklı bir hindi çiftliğe varır varmaz her sabah saat 9′da yem verildiğini fark etti. Ama iyi bir tümevarımcı olduğu için hemen bir sonuca varmak istemedi. Bekledi ve her gün tekrar tekrar gözlemledi. Bu gözlemlerini değişik koşullarda tekrar etti: Çarşambaları, perşembeleri, sıcak ve soğuk günler, yağmurlu ve yağmursuz günler. Her gün yeni bir gözlem ekledi ve sonunda bir sonuç çıkardı: “Her sabah saat 9′da yemek veriliyor bana”. Fakat bir yılbaşı günü kural bozuldu: Mantıklı hindi saat 9′da yemini beklerken boynu kesildi….”
Matematikçi ve epistemolog Bertrand Russell‘ın bu örneği bize tümevarım yönteminin zayıflığını ispat etmeye yetecek bir örnektir. Yukarıda verdiğimiz domino taşı örneğinde domino taşlarının her zaman ve durumda ardışık olarak yıkılmasını gerektirecek bir olay ortaya çıkmış olmayabilir. Bu örneğin oluşabilmesi için hiçbir tesir ve etkinin olmadığı herşeyin aynı şekilde devam edeceği bir his ile bu ispatlamalarını yapıldığı tezi vardır ki bu özellikle sosyal bilimler için kesinlikle yanlış bir tez olur. İçinde yaşadığımız dünyada gelecek olayların hep bir sebep sonuç çizgisi içinde anılması ve bu şekilde hayatımızın irdelenmesi aslında yetersiz bir anlayışın ürünüdür. Geçmişte yaşanmış sebepler ve olmuş şeylere bakarak gelecekteki olacak olan olayları kestirmeye çalışmak her zaman doğru sonuçlar vermeyebilir. Tümevarım yöntemi bu şekilde işlediğinden son dönemlerde daha tutarlı sonuçlar veren farklı ispat yöntemlerinin de kullanılmaya başlandığı pratikte ve teoride ortaya çıkmıştır. Burada tümevarım yöntemiyle ispat edilebilen bazı matematiksel önermeleri göstermeye çalışalım.













Bazen bazı formüller 1 sayısından başlamayabilir. Bu durumlarda formülün hangi sayıdan itibaren sağlanacağı formül üzerinde belirtilir. Dolayısıyla tümevarımla bu şekilde bir formülün ispatı yapılırken de 1 den başlanarak ispat yapılmaz. Çünkü verilen formül zaten 1 için sağlanmayacaktır. Formülde verilen sayıdan itibaren ispat basamağının temel basamağı yazılarak tümevarım ispatına başlanır.




| | | Devamı... 3 yorum

Bazı Ardışık Toplam Formülleri

Bilinen hikayeye göre Alman matematikçi Gauss'un, 1 den başlayarak herhangi bir sayıya kadar olan ardışık sayıların toplamı şeklinde (1+2+3+4+5.....100 gibi) yazılan ifadeyi formüle etmesiyle birlikte diğer ardışık toplamların da aynı şekilde formüle edilebileceği gözlemlenmiş ve matematikçiler tarafından bu kavramlara kafa yorulmuştur. Tümevarım ispat yönteminin geliştirilmesiyle birlikte ardışık olarak gelen terimler arasındaki toplam formülleri daha net olarak gözlemlenmiştir. Daha kolay hesaplama yapmak için formüller bazen çok elzem olabilmekte lakin bütün bu formüllerin ezberlenerek zihnimizi doldurmaya çabalamasına da izin vermemiz bizden beklenen bir davranıştır. Matematiksel alt yapısını bilmeden kuru bir ezber iyi bir matematik çalışma stratejisine uygun olmayacaktır. Burada paylaştığımız tüm formüller tümevarım yöntemi ile ispat edilerek ortaya rahatlıkla çıkarılabilir. Tümevarım yöntemi matematik gibi ilimlerde doğruluğunu gösterse de diğer ilim dallarında tutarlı sonuçlar vermekten maalesef uzak kalmıştır. (Bkz. Tümevarım ispat yöntemi)

Aşağıda işlemlerde zamandan kazanmak maksadıyla kullanılmak için bazı ardışık toplam formülleri verilmiştir. Bu formüller kullanım sıklıklarına göre sıralanmıştır. 

Burada yer alan formüllerin ispatları için Tümevarım ispatları yazımıza bakabilirsiniz.

Aşağıdaki Yazılar İlginizi Çekebilir!!!

En Çok Okunan Yazılar

Matematik Konularından Seçmeler